
Wilson et al. Ecologist’s guide to the animal model

Supplementary File 5: Tutorial for MCMCglmm version

Tutorial 1 (MCMCglmm) - Estimating the heritability of birth
weight

This tutorial will demonstrate how to run a univariate animal model using the R package
MCMCglmm and example data files provided. Additionally, this module provides some
information that applies to MCMCglmm-based analyses in general, but that will not be
included in other tutorials. Most importantly, this applies to some of the simplest ways
of determining the performance of a run using MCMCglmm, i.e., verification of the validity
of of the posterior distribution. This tutorial is not a substitute for working through the
MCMCglmm course notes, which is available from CRAN (the Comprehensive R Archive
Network, http://cran.r-project.org/, or can be accessed in R using the command
vignette("CourseNotes","MCMCglmm")). These tutorials (1-3) do not introduce one of
the main advantages of using MCMCglmm for analyses of data from natural populations -
the ability to properly model non-normal responses. These capabilities are introduced in
the documentation that is distributed with MCMCglmm, and available from CRAN.

Scenario

In a population of gryphons there is strong positive selection on birth weight with heavier
born individuals having, on average higher fitness. To find out whether increased birth
weight will evolve in response to the selection, and if so how quickly, we want to estimate
the heritability of birth weight.

Data files

Open gryphonped.txt and gryphon.txt in your text editor. The structure and contents
of these files is fairly self-explanatory. The pedigree file gryphonped.txt contains three
columns containing unique identifiers that correspond to each animal, its father, and its
mother. Note that this is a multigenerational pedigree, with the earliest generation (for
which parentage information is necessarily missing) at the beginning of the file. For later
born individuals maternal identities are all known but paternity information is incomplete
(a common situation in real world applications).

The phenotype data, as well as additional factors and covariates that we may wish
to include in our model are contained in gryphon.txt. Columns correspond to individual
identity (ANIMAL), maternal identity (MOTHER), year of birth (BYEAR), sex (SEX,1=female,
2=male), birth weight (BWT), and tarsus length (TARSUS). Each row of the data file contains
a record for a different individual.

gryphonped.txt and gryphon.txt were prepared specifically for use with ASREML.
However, tab delimited files such as these are easily read into R. The following code reads
the data in the two files into data frames called Ped and Data (the names are arbitrary,
almost any character string will do for names). This code also modifies some of the
structure of the data in some simple ways. First, we rename the column origianally called
ANIMAL to lower case, as the lower case “animal” is a reserved word for MCMCglmm that
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we will use when fitting animal models. This code also ensures that R recognizes those
data that we will use as factors and numeric data as such. The head() commands show
us just the first few lines of the phenotypic and pedigree data frames, just so that we can
reassure ourselves that we’ve read in and handled the data properly. We could view the
entire data frames by typing their names and pressing return.

> Data <- as.data.frame(read.table(file = "./gryphon.txt", header = TRUE))

> names(Data)[1] <- "animal"

> Data$animal <- as.factor(Data$animal)

> Data$MOTHER <- as.factor(Data$MOTHER)

> Data$BYEAR <- as.factor(Data$BYEAR)

> Data$SEX <- as.factor(Data$SEX)

> Data$BWT <- as.numeric(Data$BWT)

> Data$TARSUS <- as.numeric(Data$TARSUS)

> head(Data)

animal MOTHER BYEAR SEX BWT TARSUS

1 1029 1145 968 1 10.77 24.77

2 1299 811 968 1 9.30 22.46

3 643 642 970 2 3.98 12.89

4 1183 1186 970 1 5.39 20.47

5 1238 1237 970 2 12.12 NA

6 891 895 970 1 NA NA

> Ped <- as.data.frame(read.table(file = "./gryphonped.txt", header = TRUE))

> for (x in 1:3) Ped[, x] <- as.factor(Ped[, x])

> head(Ped)

ID FATHER MOTHER

1 1306 <NA> <NA>

2 1304 <NA> <NA>

3 1298 <NA> <NA>

4 1293 <NA> <NA>

5 1290 <NA> <NA>

6 1288 <NA> <NA>

This code is intended to run in a Linux/Unix environment. The only difference on a
PC is that the file location would have to be specified slightly differently. For example if
the files were in a folder called JAE_MCMCglmm on the root C: drive, the two lines above
that read the data might be

Data<-as.data.frame(read.table(file=

"C:\JAE_MCMCglmm\gryphon.txt",header=TRUE))

Ped<-as.data.frame(read.table(file=

"C:\JAE_MCMCglmm\gryphonped.txt",header=TRUE))

Similarly on a Mac (OSX) if the files were in a folder called JAE_MCMCglmm in the
documents area, the two lines above that read the data might be
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Data<-as.data.frame(read.table(file=

"//users//name/documents/JAE_MCMCglmm/gryphon.txt",header=TRUE))

Ped<-as.data.frame(read.table(file=

"//users//name/documents/JAE_MCMCglmm/gryphonped.txt",header=TRUE))

Running the model

First load MCMCglmm:

> library(MCMCglmm)

You should check that you have the most current version of MCMCglmm witih the com-
mand help(package=MCMCglmm). You can check the number of the current version on
CRAN. If you need to update (or install) MCMCglmm, use install.packages() and follow
the prompted instructions.

The first model we will fit is a simple animal model with no fixed effects, and only an
‘animal’ random effect relating individuals to their additive genetic values through the
pedigree. First we are going to define priors. In a way we might want to avoid using
priors, because we would like all of the infromation in our analysis to come from our data.
By default MCMCglmm uses improper priors, but this can cause inferential and numerical
problems. We will specify priors for the animal effect and the residual variance using the
following code:

> prior1.1 <- list(G = list(G1 = list(V = 1, nu = 0.002)), R = list(V = 1,

+ nu = 0.002))

This prior specification used to be used a lot because it was believed to be relatively
uninformative, and is equivalent to an inverse-gamma prior with shape and scale equal to
0.001. In many cases it is relatively uninformative but when the posterior distribution for
the variances has suport close to zero it can behave poorly. Parameter expanded priors
(See Chapter 8 of the CourseNotes) are gaining in popularity due to their better behaviour
but for the purposes of this tutorial we will stick with the inverse-gamma prior. We have
told MCMCglmm to pay little heed to our prior expectaion (V) by specifying a small degree
of belief parameter (n) of 0.002. Since this is a univariate analysis, the priors are matricies
of order 1 and thus nu>0 is the smallest degree of belief that provides what is known as
a ‘proper’ prior, avoiding numerical problems. In fact, there is a lot of information in the
data regarding the marginal distributions of the parameters, and MCMCglmm will run most
of the models that we suggest in these tutorials without priors. However, this is poor
practice, and we will therefore use priors throughout these tutorials.

We can now fit an animal model. The model to decompose variation in birth weight
into genetic and residual effects is as follows:

> model1.1 <- MCMCglmm(BWT ~ 1, random = ~animal, pedigree = Ped,

+ data = Data, prior = prior1.1)

MCMC iteration = 0

MCMC iteration = 1000
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MCMC iteration = 2000

MCMC iteration = 3000

MCMC iteration = 4000

MCMC iteration = 5000

MCMC iteration = 6000

MCMC iteration = 7000

MCMC iteration = 8000

MCMC iteration = 9000

MCMC iteration = 10000

MCMC iteration = 11000

MCMC iteration = 12000

MCMC iteration = 13000

In addition: Warning messages:

1: In MCMCglmm(BWT ~ 1, random = ~animal, pedigree = Ped, data = Data, :

some combinations in animal do not exist and 225 missing records have

been generated

After typing this code, MCMCglmm will run, taking about 20 seconds on a modern desk-
top computer. The progress of the run will be printed to the screen. Also, note the
warning message will be printed at the end of the run. This is natural too. In order
for the MCMC algorithm to work, MCMCglmm must keep track of effects associated with
unmeasured individuals appearing in the pedigree. This will not affect the answers, but
when many unmeasured individuals exist, it can hinder the ability of the algorithm to
explore the parameter space (more on this, and a solution, later).

Lets have a look at the MCMCglmm outputs. First we will evaluate how confident we
can be that MCMCglmm found good answers. By entering

> plot(model1.1$Sol)

in the console, we get Figure 1 (p. 5). The plot on the left shows a time series of
the values of 1000 samples of the posterior distribution of the the model intercept (mean
birthweight). The plot on the right shows the same data as a distribution. Complicated
statistical methods for estimating population means are of course of little interest; rather,
we are examining these outputs to check that MCMCglmm’s algorithms worked well for
our data and for this model. The important point here is that a consistent amount of
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Figure 1: The posterior distribution of the fixed effect (the intercept, or mean) in model 1.1.
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Figure 2: The posterior distributions of the variance components of model 1.1, based on an analysis with
the default values for nitt, burnin, and thin in MCMCglmm.

variation around a largely unchanging mean value of the intercept was obtained, and
the posterior distribution of the intercept appears to be valid. More rigorous means
of evaluation the independence of the samples in the posterior distribution (evaluating
autocorrelation) are discussed in the MCMCglmm CourseNotes, available from CRAN.
Note that your output for model 1.1 may not be identical to this due to Monte Carlo
(random number) error.

The posterior distributions of the the variance components are generally of more inter-
est to animal model users. We can view plots of the posterior distribution for the variance
components for model 1.1 by

> plot(model1.1$VCV)

which generates Figure 2 (p. 6). Here we see distributions of the estimates of the
additive genetic (animal) and residual (units) effects. These samples contain some au-
tocorrelation, i.e., trends are apparent in the left-hand plot. We can deal with this easily.
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We will simply re-run the model for a longer number of iterations, and sample the chain
less frequently. So far we have been running MCMCglmm with its default values. These
defaults are a total run length of 13000 iterations, the first 3000 of which are discarded
as a ‘burn-in’ period to make sure that the converges to the part of the parameter space
where the maximum likelihood exists. The remaining 10000 iterations are sampled (es-
timates retained) every 10 iterations (the thinning interval). Because the values in the
left-hand plots in figure 2 to appear to have different values at the beginning of the run,
we might suspect that a longer burn-in period might be required. We can reduce the
autocorrelation by lengthening the rest of the run and sampling the chain less frequently.
The following code runs the same model 1.1, but is likely to produce better samples of
the posterior distributions. This model should take about two minutes to analyze.

> model1.1 <- MCMCglmm(BWT ~ 1, random = ~animal, pedigree = Ped,

+ data = Data, nitt = 65000, thin = 50, burnin = 15000, prior = prior1.1,

+ verbose = FALSE)

Notice that we have now included the command verbose=FALSE in the MCMCglmm call.
We will continue this throughout the tutorial so that more complete screen outputs can
be included in this document without using too much space.

Now produce the plots of the samples of the fixed and random effects (they have not
been included in this document). Note that the autocorrelation is much reduced. A
more compact way to evaluate the validity of the posterior distributions is to calculate
autocorrelation among samples, as follows:

> autocorr(model1.1$VCV)

, , animal

animal units

Lag 0 1.000000000 -0.806746701

Lag 50 0.218598985 -0.201693714

Lag 250 0.033672405 -0.025000237

Lag 500 -0.003125696 -0.001556230

Lag 2500 -0.015986190 -0.001937658

, , units

animal units

Lag 0 -0.806746701 1.000000000

Lag 50 -0.211352358 0.184665450

Lag 250 -0.021533553 0.027749817

Lag 500 -0.020918042 0.009222121

Lag 2500 0.002489772 0.014600660

We will consider these levels of autocorrelation acceptable, at least for the purposes
of this tutorial. Ideally, all samples of the posterior distribution should be independent,
and the autocorrelation for all lag values greater than zero should be near zero. However,
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in practice this will not strictly be achievable for all analytical scenarios. Certainly the
levels of autocorrelation observed here should not be tollerated in any formal analysis.
Note that the validity of posterior distributions of any analysis should always be checked;
however, for brevity we will not continue to be so consistently diligent throughout the rest
of these tutorials. We can now proceed with confidence to recover some more information
from these samples. We can obtain estimates of the additive genetic and residual variance
by calculating the modes of the posterior distributions:

> posterior.mode(model1.1$VCV)

animal units

3.301745 3.757968

We can obtain the Bayesian equivalent of confidence intervals by calculating the the
values of the estimates that bound 95% (or any other proportion) of the posterior distri-
butions:

> HPDinterval(model1.1$VCV)

lower upper

animal 2.311629 4.847539

units 2.785857 4.834786

attr(,"Probability")

[1] 0.95

We specified weak priors in this analyses. Now we will check whether or not proper
priors would have influenced the results that we obtained. The simplest way to do this
is to rerun the model with different priors. Here we construct priors with a larger degree
of belief parameter, and we will specify that a large proportion of the variation is under
genetic control:

> p.var <- var(Data$BWT, na.rm = TRUE)

> prior1.1.2 <- list(G = list(G1 = list(V = matrix(p.var * 0.05),

+ nu = 1)), R = list(V = matrix(p.var * 0.95), nu = 1))

> model1.1.2 <- MCMCglmm(BWT ~ 1, random = ~animal, pedigree = Ped,

+ data = Data, prior = prior1.1.2, nitt = 65000, thin = 50,

+ burnin = 15000, verbose = FALSE)

> posterior.mode(model1.1$VCV)

animal units

3.301745 3.757968

> posterior.mode(model1.1.2$VCV)

animal units

3.443248 3.902896

and we can therefore conclude that the difference in the priors has little effect on the
outcome of the analysis. This is typical for an analysis where lots of data are available
relative to the complexity of the model, but is often not the case. In all cases, it is
important to check the effect of priors on conclusions drawn from a model.
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Estimating heritability

A useful property of Bayesian posterior distributions is that we can apply almost any
transformation to these distributions and they will remain valid. This applies to the
calculation of heritabilities. We can obtain an estimate of the heritability by applying the
basic formula h2=VA/VP to each sample of the posterior disribution:

> posterior.heritability1.1 <- model1.1$VCV[, "animal"]/(model1.1$VCV[,

+ "animal"] + model1.1$VCV[, "units"])

> HPDinterval(posterior.heritability1.1, 0.95)

lower upper

var1 0.32455 0.6196413

attr(,"Probability")

[1] 0.95

> posterior.mode(posterior.heritability1.1)

var1

0.4828743

Generate a plot of the posterior distribution of this heritability estimate (Figure 3,
p. 10):

> plot(posterior.heritability1.1)

Adding fixed effects

To add effects to a univariate model we simply modify the fixed effect portion of the the
model specification:

> model1.2 <- MCMCglmm(BWT ~ SEX, random = ~animal, pedigree = Ped,

+ data = Data, prior = prior1.1, nitt = 65000, thin = 50, burnin = 15000,

+ verbose = FALSE)

We can assess the significance of sex as a fixed effect by examining its posterior distri-
bution.

> posterior.mode(model1.2$Sol[, "SEX2"])

var1

2.208381

> HPDinterval(model1.2$Sol[, "SEX2"], 0.95)

lower upper

var1 1.904032 2.517271

attr(,"Probability")

[1] 0.95
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Figure 3: The posterior distributions the heritability from model 1.1.
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The posterior distribution of the SEX2 term does not overlap zero. Thus the we can
infer that sex has a statistical effect on birthweight in this model and is a useful addition
to the model, for most purposes. MCMCglmm has designated SEX2 as the contrast between
the two factor levels (male and female).

It is also worth noting that the variance components have changed slightly:

> posterior.mode(model1.2$VCV)

animal units

2.814338 3.044409

In fact since SEX effects were previously contributing to the residual variance of the
model our estimate of VR (denoted ’units’ in the output) is now slightly lower than before.
This has an important consequence for estimating heritability since if we calculate VP as
VA+VR then as we include fixed effects we will soak up more residual variance driving
VP. Assuming that VA is more or less unaffected by the fixed effects fitted then as VP

goes down we expect our estimate of h2 will go up.

> posterior.heritability1.2 <- model1.2$VCV[, "animal"]/(model1.2$VCV[,

+ "animal"] + model1.2$VCV[, "units"])

> posterior.mode(posterior.heritability1.2)

var1

0.5079329

> HPDinterval(posterior.heritability1.2, 0.95)

lower upper

var1 0.3486594 0.627067

attr(,"Probability")

[1] 0.95

Here h2 has increased slightly from 0.4829 to 0.5079 (again, your values may differ
slightly due to Monte Carlo error). Which is the better estimate? It depends on what
your question is. The first is an estimate of the proportion of variance in birth weight
explained by additive effects, the latter is an estimate of the proportion of variance in
birth weight after conditioning on sex that is explained by additive effects.

Adding random effects

This is done by simply modifying the model statement in the same way, but requires
addition of a prior for the new random effect. For instance, we can fit an effect of birth
year:

> prior1.3 <- list(G = list(G1 = list(V = 1, n = 0.002), G2 = list(V = 1,

+ n = 0.002)), R = list(V = 1, n = 0.002))

> model1.3 <- MCMCglmm(BWT ~ SEX, random = ~animal + BYEAR, pedigree = Ped,

+ data = Data, nitt = 65000, thin = 50, burnin = 15000, prior = prior1.3,

+ verbose = FALSE)

> posterior.mode(model1.3$VCV)
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animal BYEAR units

2.5971190 0.7887398 2.3755307

Here the variance in birth weight explained by birth year is 0.7887. Note that although
VA has changed somewhat, most of what is now partitioned as a birth year effect was
previously partitioned as VR. Thus what we have really done here is to partition environ-
mental effects into those arising from year to year differences versus everything else, and
we do not really expect much change in h2 (since now h2 = VA/(VA + VBY + VR)).

However, we get a somewhat different result if we also add a random effect of MOTHER
to test for maternal effects:

> p.var <- var(Data$BWT, na.rm = TRUE)

> prior1.4 <- list(G = list(G1 = list(V = 1, n = 0.002), G2 = list(V = 1,

+ n = 0.002), G3 = list(V = 1, n = 0.002)), R = list(V = 1,

+ n = 0.002))

> model1.4 <- MCMCglmm(BWT ~ SEX, random = ~animal + BYEAR + MOTHER,

+ pedigree = Ped, data = Data, nitt = 65000, thin = 50, burnin = 15000,

+ prior = prior1.4, verbose = FALSE)

> posterior.mode(model1.4$VCV)

animal BYEAR MOTHER units

2.2923457 0.8594168 1.0197711 1.5241094

Here partitioning of significant maternal variance has resulted in a further decrease
in VR but also a decrease in VA. The latter is because maternal effects of the sort we
simulated (fixed differences between mothers) will have the consequence of increasing
similarity among maternal siblings. Consequently they can look very much like additive
genetic effects and if present, but unmodelled, represent a type of ‘common environment
effect’ that can - and will- cause upward bias in VA and so h2. Let’s compare the estimates
of heritability from each of models 1.2, 1.3 and 1.4:

> posterior.heritability1.3 <- model1.3$VCV[, "animal"]/(model1.3$VCV[,

+ "animal"] + model1.3$VCV[, "BYEAR"] + model1.3$VCV[, "units"])

> posterior.heritability1.4 <- model1.4$VCV[, "animal"]/(model1.4$VCV[,

+ "animal"] + model1.4$VCV[, "BYEAR"] + model1.4$VCV[, "MOTHER"] +

+ model1.4$VCV[, "units"])

> posterior.mode(posterior.heritability1.2)

var1

0.5079329

> posterior.mode(posterior.heritability1.3)

var1

0.4543577

> posterior.mode(posterior.heritability1.4)

var1

0.3950425
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Testing significance of variance components

While testing the significance of fixed effects by evaluating whether or not their posterior
distributions overlap zero was simple and valid, this approach does not work for vari-
ance components. Variance components are bound to be positive (given a proper prior),
and thus even when a random effect is not meaningful, its posterior distribution will
never overlap zero. Model comparisons can be performed using the deviance information
criterion (DIC), although it should be noted that the properties of DIC are not well un-
derstood and that the DIC may be focused at the wrong level for most people’s intended
level of infernce - particularly with non-Gaussian responses. The implementation of DIC
in MCMCglmm is further described in the reference manual. DIC values are calculated by
MCMCglmm by default. Briefly, DIC like other information criteria balance model fit and
model complexity simultaneously, and small values of DIC are prefered. We can compare
models 1.4 and 1.3, i.e., models with and without the mother term:

> model1.3$DIC

[1] 3547.064

> model1.4$DIC

[1] 3302.283

model 1.4 has a much lower DIC value. Since the maternal effect term is the only
difference between the models, we can consider the inclusion of this term statistically
justifiable. We should note however that DIC has a large sampling variance and should
probably only be calculated based on much longer MCMC runs.

Tutorial 2 (MCMCglmm) - A bivariate animal model

This tutorial will demonstrate how to run a multivariate animal model using the R package
MCMCglmm and example data files provided.

Scenario

Since natural selection rarely acts on single traits, to understand how birth weight might
evolve in our population of gryphons, we may also want to think about possible covari-
ance with other traits. If tarsus length at fledging is also under positive selection what
implications does this have for birth weight and vice versa? If the two traits are positively
genetically correlated then this will facilitate evolution of larger size (since response of
one trait will induce a positively correlated response in the other). If there is negative
genetic covariance then this could act an evolutionary constraint.

Using multivariate models allows the estimation of parameters relating to each trait
alone (i.e. VA, h2, etc.), but also yields estimates of covariance components between traits.
These include the (additive) genetic covariance COVA which is often rescaled to give the
genetic correlation rG. However, covariance can also arise through other random effects
(e.g. maternal covariance) and these sources can be explicitly modelled in a bivariate
analysis.
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Data

Pedigree and phenotypic data files are the same as those used in tutorial 1 (i.e, gryphonped.txt
and gryphon.txt respectively). See tutorial 1, section 2 for information on loading these
data into R. Note that if you are continuing from tutorial number 1 that these data will
still be loaded and no further processing of the raw data is required at this point.

Fitting the model

Fitting a multivariate model in MCMCglmm involves several new consideration above those
for fitting univariate models. First, we have to fit multivariate priors; second, we have to
specify the ways in which effects on different traits may covary, including the nature of
residual (co)variation; and third, we will have to be a little more specific when specifying
to MCMCglmm what type of distributions from which we assume our data are drawn.

Our most basic model can be specified as:

> prior2.1 <- list(G = list(G1 = list(V = diag(2), n = 1.002)),

+ R = list(V = diag(2), n = 1.002))

> model2.1 <- MCMCglmm(cbind(BWT, TARSUS) ~ trait - 1, random = ~us(trait):animal,

+ rcov = ~us(trait):units, family = c("gaussian", "gaussian"),

+ pedigree = Ped, data = Data, prior = prior2.1, verbose = FALSE)

> plot(model2.1$VCV[, "TARSUS:TARSUS.animal"])

We have constructed the prior similarly to the those in the univariate models in tutorial
1, only we are specifying a 2x2 covariance matrix rather than a single variance. In order
to provide proper priors, we have set the degree of belief parameter to greater than 1
(1.002). We have used the R command cbind, ‘column-bind’, to specify the two response
variables, body weight and tarsus length. The nature of genetic and residual (co)variance
(between and) of the traits is specified as unstructured matrices, the most general structure
available for this type of data. Finally, we have specified that we wish to treat both traits
as gaussian responses.

In tutorial 1, we used full autocorrelation tables to evaluate the validity of the posterior
distribution. Note that we have not done this here. For a bivariate model this table can
become very complex. Nonetheless, it is worth evaluating, rather it is simply to large
to include here. It can be viewed in the console as before. Here we have displayed only
the autocorrelation for estimates of additive genetic effects for tarsus length with a lag
of five samples (50 iterations given this MCMCglmm run with default values). This lag
of 0.4766 is clearly unacceptable. The posterior distribution of the additive genetic effect
on tarsus length is shown in Figure 4 (p. 15), note the autocorrelation evident in the
left-hand plot. We will opt to run the analysis for longer. This longer run could be run
using the following code:

model2.1<-MCMCglmm(cbind(BWT,TARSUS)~trait-1,

random=~us(trait):animal,

rcov=~us(trait):units,

family=c("gaussian","gaussian"),

pedigree=Ped,data=Data,

nitt=130000,thin=100,burnin=30000,
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Figure 4: The posterior distribution of the additive genetic effect for tarsus length in a MCMCglmm run
with default values.
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prior=prior2.1,verbose=FALSE)

# the autocorrelation of the genetic variance of TARSUS at Lag 5

autocorr(model2.2$VCV)[,,"TARSUS:TARSUS.animal"][3,4]

However, this run might take as long as an hour. For the purpose of this tutorial we
have provided an output for such a run. It can be obtained and manipulated as follows,
assuming that the file ./model1point1LongRun.Rdat is available at the specified location:

> load(file = "./model2point1LongRun.Rdat")

> autocorr(model2.1$VCV)[, , "TARSUS:TARSUS.animal"][3, 4]

[1] -0.05055322

This level of autocorrelation is more acceptable, at least for the purpose of demonstra-
tion in this tutorial.

We can recover variance components, heritabilities, and genetic correlations from the
posterior distribution of this model:

> posterior.mode(model2.1$VCV)

BWT:BWT.animal TARSUS:BWT.animal BWT:TARSUS.animal

3.143249 1.669598 1.669598

TARSUS:TARSUS.animal BWT:BWT.units TARSUS:BWT.units

11.385778 3.795060 3.379059

BWT:TARSUS.units TARSUS:TARSUS.units

3.379059 17.583740

> heritability.BWT2.1 <- model2.1$VCV[, "BWT:BWT.animal"]/(model2.1$VCV[,

+ "BWT:BWT.animal"] + model2.1$VCV[, "BWT:BWT.animal"])

> posterior.mode(heritability.BWT2.1)

var1

0.4999336

> heritability.TARSUS2.1 <- model2.1$VCV[, "TARSUS:TARSUS.animal"]/(model2.1$VCV[,

+ "TARSUS:TARSUS.animal"] + model2.1$VCV[, "TARSUS:TARSUS.units"])

> posterior.mode(heritability.TARSUS2.1)

var1

0.3736259

> genetic.correlation2.1 <- model2.1$VCV[, "BWT:TARSUS.animal"]/sqrt(model2.1$VCV[,

+ "BWT:BWT.animal"] * model2.1$VCV[, "TARSUS:TARSUS.animal"])

> posterior.mode(genetic.correlation2.1)

var1

0.4459136
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Adding fixed and random effects

Fixed and random effects can be added just as for the univariate case. Given that our full
model of BWT from tutorial 1 had SEX as a fixed effect as well as random effects of BYEAR
and MOTHER we could specify a bivariate formulation of this using the following code:

prior2.2<-list(G=list(G1=list(V=diag(2),n=1.002),

G2=list(V=diag(2),n=1.002),

G3=list(VV=diag(2),n=1.002)),

R=list(V=diag(2),n=1.002))

model2.2<-MCMCglmm(cbind(BWT,TARSUS)~trait-1+trait:SEX,

random=~us(trait):animal+us(trait):BYEAR+us(trait):MOTHER,

rcov=~us(trait):units,

family=c("gaussian","gaussian"),

pedigree=Ped,data=Data,

nitt=130000,thin=100,burnin=30000,

prior=prior2.2,verbose=FALSE)

Again we have provided the data from one such run. It can be accessed using the code:

> load(file = "./model2point2LongRun.Rdat")

> autocorr(model2.2$VCV)[, , "TARSUS:TARSUS.animal"][3, 4]

[1] 0.2077895

As before we can obtain the raw variance component estimates and genetic correlations
for the random effects:

> posterior.mode(model2.2$VCV)

BWT:BWT.animal TARSUS:BWT.animal BWT:TARSUS.animal

2.0088157 3.2313124 3.2313124

TARSUS:TARSUS.animal BWT:BWT.BYEAR TARSUS:BWT.BYEAR

9.1606591 0.9650715 0.1691856

BWT:TARSUS.BYEAR TARSUS:TARSUS.BYEAR BWT:BWT.MOTHER

0.1691856 3.3479639 1.2381531

TARSUS:BWT.MOTHER BWT:TARSUS.MOTHER TARSUS:TARSUS.MOTHER

-1.6707200 -1.6707200 4.4624268

BWT:BWT.units TARSUS:BWT.units BWT:TARSUS.units

1.9438372 4.1659234 4.1659234

TARSUS:TARSUS.units

12.5577406

> genetic.correlation2.2 <- model2.2$VCV[, "BWT:TARSUS.animal"]/sqrt(model2.2$VCV[,

+ "BWT:BWT.animal"] * model2.2$VCV[, "TARSUS:TARSUS.animal"])

> maternal.correlation2.2 <- model2.2$VCV[, "BWT:TARSUS.MOTHER"]/sqrt(model2.2$VCV[,

+ "BWT:BWT.MOTHER"] * model2.2$VCV[, "TARSUS:TARSUS.MOTHER"])

> posterior.mode(genetic.correlation2.2)

var1

0.743332
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> posterior.mode(maternal.correlation2.2)

var1

-0.8039171

Evaluation of the statistical support for these genetic and maternal correlations is
straightforward. Because we imposed no constraint on their estimation, we can evaluate
the extent to which the posterior distributions overlap zero:

> HPDinterval(genetic.correlation2.2, 0.95)

lower upper

var1 0.5159636 0.9263339

attr(,"Probability")

[1] 0.95

> HPDinterval(maternal.correlation2.2, 0.95)

lower upper

var1 -0.9446212 -0.3595398

attr(,"Probability")

[1] 0.95

Neither or these posterior distributions overlapps zero, so we can consider them both
statistically supported.

Tutorial 3 (MCMCglmm) - A repeated measures animal model

This tutorial will demonstrate how to run a univariate animal model for a trait with
repeated observations using the software MCMCglmm and example data files provided.

Scenario

Since gryphons are iteroparous, multiple observations of reproductive traits are available
for some individuals. Here we have repeated measures of lay date (measured in days after
Jan 1) for individual females of varying age from 2 (age of maturation) up until age 6.
Not all females lay every year so the number of observations per female is variable. We
want to know how repeatable the trait is, and (assuming it is repeatable) how heritable
it is.

Data

We use for these examples the same pedigree as was used for tutorials 1 and 2, and we
assume that it is still loaded. If this is not the case, revisit tutorial 1, section 2 for
instructions for loading the pedigree. We are however going to use different phenotypic
data collected from the same population of gryphons, and we need to load these data. We
can load the data from the file gryphonRM.txt into an R data frame using the following
code
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> DataRM <- as.data.frame(read.table(file = "./gryphonRM.txt",

+ header = TRUE))

> names(DataRM)[1] <- "animal"

> DataRM$animal <- as.factor(DataRM$animal)

> DataRM$BYEAR <- as.factor(DataRM$BYEAR)

> DataRM$AGE <- as.factor(DataRM$AGE)

> DataRM$YEAR <- as.factor(DataRM$YEAR)

> DataRM$LAYDATE <- as.numeric(DataRM$LAYDATE)

> head(DataRM)

animal BYEAR AGE YEAR LAYDATE

1 1 990 2 992 19

2 1 990 3 993 23

3 1 990 4 994 24

4 1 990 5 995 23

5 1 990 6 996 29

6 2 990 2 992 21

> DataRM$ID <- DataRM$animal

> head(DataRM)

animal BYEAR AGE YEAR LAYDATE ID

1 1 990 2 992 19 1

2 1 990 3 993 23 1

3 1 990 4 994 24 1

4 1 990 5 995 23 1

5 1 990 6 996 29 1

6 2 990 2 992 21 2

Note that we have created a new factor called ID that is the same as the ’animal’
factor. MCMCglmm will recognize the term animal and use it to relate individuals to
their records in a pedigree. The factor ID allows us to disassociate individual records from
the pedigree, which is an important part of analyzing repeated measures data, as we will
see.

Estimating repeatability

With repeated measures on individuals it is often of interest, prior to fitting a genetic
model, to see how repeatable a trait is. We can estimate the repeatability of a trait as the
proportion of phenotypic variance explained by individual identity using the commands
below

> p.var <- var(DataRM$LAYDATE, na.rm = TRUE)

> prior3.1 <- list(G = list(G1 = list(V = 1, nu = 0.002)), R = list(V = 1,

+ nu = 0.002))

> model3.1 <- MCMCglmm(LAYDATE ~ 1, random = ~ID, data = DataRM,

+ prior = prior3.1, verbose = FALSE)

> posterior.mode(model3.1$VCV)
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ID units

11.45322 21.14320

Note the use of the new ID factor that we created in the previous section.
Between-individual variance is given by the ID component, while the residual compo-

nent (Variance) therefore represents within-individual variance. Here then the repeata-
bility of the trait can be determined by as 0.353 (i.e., 11.4532/(11.4532+21.1432). Given
that we set up the simulation such that mean lay date changes with age (initially increas-
ing to age 5 before a late life decline) we might ask what the repeatability of lay date is
after conditioning on age effect. This would be done by adding age into the model as a
fixed effect.

> model3.2 <- MCMCglmm(LAYDATE ~ AGE, random = ~ID, data = DataRM,

+ prior = prior3.1, verbose = FALSE)

> plot(model3.2$Sol)

> plot(model3.2$VCV)

> posterior.mode(model3.2$VCV)

ID units

12.63794 16.46501

Note that the random effect structure has remained unchaged, and so we have not
modified the prior between models 3.1 and 3.2.

So that the repeatability of laydate, after accounting for age effects, is now estimated
as 0.445 (i.e., 12.6379/(12.6379+16.465). So, just as we saw when estimating h2 in tutorial
1, the inclusion of fixed effects will alter the estimated effect size if we determine total
phenotypic variance as the sum of the variance components. Thus, proper interpretation
is vital.

Here age is modelled as a 5 level factor (see the convertion of age to a factor in section
3.2). We could equally have fitted it as a continuous variable instead in which case, given
the late life decline, we would probably also include a quadratic term.

Partitioning additive and permanent environment effects

Generally we expect that the repeatability will set the upper limit for heritability since,
while additive genetic effects will cause among-individual variation, so will other types
of effect. Non-additive contributions to fixed among-individual differences are normally
referred to as ‘permanent environment effects’, although ‘non-heritable effects’ that are
consistent within individuals may be a better way to think of modelling this effect. If a
trait has repeated measures then it is necessary to model permanent environment effects
in an animal model to prevent upward bias in VA. To illustrate this fit the animal model

> model3.3 <- MCMCglmm(LAYDATE ~ 1 + AGE, random = ~animal, pedigree = Ped,

+ data = DataRM, prior = prior3.1, verbose = FALSE)

> posterior.mode(model3.3$VCV)

animal units

13.67353 16.92081
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This suggests that all of the among-individual variance is - rightly or wrongly - being
partitioned as VA here. In fact here the partition is wrong since the simulation included
both additive genetic effects and additional fixed heterogeneity that was not associated
with the pedigree structure (i.e. permanent environment effects). An more appropriate
estimate of VA is given by the model:

> p.var <- var(DataRM$LAYDATE, na.rm = TRUE)

> prior3.4 <- list(G = list(G1 = list(V = 1, n = 0.002), G2 = list(V = 1,

+ n = 0.002)), R = list(V = 1, n = 0.002))

> model3.4 <- MCMCglmm(LAYDATE ~ 1 + AGE, random = ~animal + ID,

+ pedigree = Ped, data = DataRM, prior = prior3.4, verbose = FALSE)

> posterior.mode(model3.4$VCV)

animal ID units

5.123798 7.056109 16.242474

The estimate of VA is now much lower (reduced from 13.6735 to 5.1238) since the ad-
ditive and permanent environment effects are being properly separated. We could obtain
estimates of h2 and of the repeatability from this model using the following commands:

> model3.4.VP <- model3.4$VCV[, "animal"] + model3.4$VCV[, "ID"] +

+ model3.4$VCV[, "units"]

> model3.4.IDplusVA <- model3.4$VCV[, "animal"] + model3.4$VCV[,

+ "ID"]

> posterior.mode(model3.4.IDplusVA/model3.4.VP)

var1

0.4416178

> posterior.mode(model3.4$VCV[, "animal"]/model3.4.VP)

var1

0.1402542

Adding additional effects and testing significance

Models of repeated measures can be extended to include other fixed or random effects.
For example try including year of measurement (YEAR).

> p.var <- var(DataRM$LAYDATE, na.rm = TRUE)

> prior3.5 <- list(G = list(G1 = list(V = 1, n = 0.002), G2 = list(V = 1,

+ n = 0.002), G3 = list(V = 1, n = 0.002), G4 = list(V = 1,

+ n = 0.002)), R = list(V = 1, n = 0.002))

> model3.5 <- MCMCglmm(LAYDATE ~ 1 + AGE, random = ~animal + ID +

+ YEAR + BYEAR, pedigree = Ped, data = DataRM, prior = prior3.5,

+ verbose = FALSE)

> posterior.mode(model3.5$VCV)
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animal ID YEAR BYEAR units

4.467981193 9.103175219 7.302559457 0.002776165 7.963076202

This model will return additional variance components corresponding to year of mea-
surement effects and birth year (of the female effects). The latter were not simulated as
should be apparent from the parameter estimate (and by the support interval derivable
from the posterior distribution and from DIC-based comparison of model3.5 and a model
from which the birth year term had been eliminated, see tutorial 1). However, YEAR ef-
fects were simulated as should be apparent from the from the modal estimate and from
the support interval (try this yourself using HPDinterval()) and this could be formally
confirmed by comparison of DIC.

YEAR effects could alternatively be included as fixed effects (try this, you should be
able to handle the new prior specification at this point). Since we simulated large year
of measurement effects this treatment will reduce VR and increase the the estimates of
heritability and repeatability which must now be interpreted as proportions of phenotypic
variance after conditioning on both age and year of measurement effects.
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